

Math
Problem Solving Club Nov 9 2016

N mathematicians walk into a bar. The first orders
1 beer, the second orders ½ a beer, the third

orders ¼ a beer and so on

The bartender says stupid mathematicians and
gives them 2 beers

Modular arithmetic

● Modular arithmetic is a system of arithmetic for
integers, where numbers "wrap around" upon
reaching a certain value—the modulus

● If a ≡ b (mod m), a and b are said to be
congruent modulo m

● 1 ≡ 13 (mod 12)
● 1 ≡ 25 (mod 12)
● -1 ≡ 11 (mod 12)

Properties of modular arithmetic

● Which of the following is true?

If a ≡ b (mod m) and c ≡ d (mod m)

● a+c ≡ b+d (mod m)
● a-c ≡ b-d (mod m)
● a×c ≡ b×d (mod m)
● ac ≡ bd (mod m)
● ac ≡ ad (mod m)
● ac ≡ bc (mod m)
● a÷c ≡ b÷d (mod m)

Modulo operation

● In computing, the modulo operation finds the remainder after
division of one number by another

● 25 % 12 =
– Answer: 1

● (-1) % 12 =
– In C++/Java: -1

– In Python: 11

● Problems frequently want the answer modulo m, which usually
means the non-negative remainder when the answer is divided by
m.

● (a+b)%m = (a%m + b%m)%m
● (a-b)%m = (a%m - b%m)%m
● (a*b)%m = ((a%m)*(b%m))%m

Greatest common divisor

● gcd(a, b) is the largest integer that divides both a and b
● For example, gcd(8, 12) = 4
● What is gcd(60, 45)?
● How do you compute gcd(a, b)?

– Euclidean algorithm

– function gcd(a, b)

– if b = 0

– return a;

– else

– return gcd(b, a % b);

Exponentiation by squaring

● How can we calculate ab?
● Naive exponentiation: O(b)
● Observe that xn =

– If n is even, then (xn/2)2

– If n is odd, then x(x(n-1)/2)2

● What is the time complexity of evaluating?
– O(log b)

● This can be also used for raising matrices to high
powers (e.g. finding the n’th Fibonacci number)

Modular inverse

● (a/b) % m ≠ ((a%m) / (b%m)) % m
● How can we do modular division?

– We can sometimes use a modular inverse

● If a-1 is the modular multiplicative inverse of a modulo
m, then aa-1 = 1 (mod m)
– Now (a/b) % m = ((a%m) * ((b-1)%m)) % m

● When does the modular inverse exist?
– The multiplicative inverse of a modulo m exists if and only

if a and m are coprime (i.e., if gcd(a, m) = 1).

Finding the modular inverse

● How do we compute modular inverses?
● Approach 1: Extended euclidean algorithm

– Generally the fastest and easiest approach

– A slightly modified version of the Euclidean algorithm can
find modular inverses

● Approach 2: Euler’s (or Fermat’s little) theorem
– aφ(m)-1 ≡ a-1 (mod m) where φ(m) is Euler's totient function

(positive integers up to a given integer n that are relatively
prime to n)

– For a prime modulus p, ap-2 ≡ a-1 (mod p)

– Use exponentiation by squaring

Logarithms

● Useful properties of logarithms:
– log(a×b) = log a + log b

– log(a÷b) = log a – log b

– log(ab) = b log a

● How do you find the number of digits in a number?
– log10(1) = 0

– log10(2) ≈ 0.3010

– log10(999) ≈ 2.9996

– log10(1000) = 3

– log10(1001) ≈ 3.0004

● The number of digits in n is log⌊ 10(n) + 1⌋

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

