
Minimum 
Spanning 
Trees
Problem Solving Club
January 25, 2017



Review: What is a tree?

A tree is an undirected graph. The following are all equivalent definitions:

● Any two vertices are connected by exactly one path
● Connected with exactly V-1 edges
● Connected and has no cycles



A spanning tree of an undirected graph G is a tree that includes all vertices of G.

● Does every graph have a spanning tree?
● Can a graph have more than one spanning tree?

What is a spanning tree?

● The number of spanning trees of any graph 
can be found using Kirchhoff’s theorem

● Take the determinant of a V×V matrix, 
where the entry in row i and column j is:
○ The degree of vertex i, if i = j
○ -1, if vertices i and j are adjacent
○ 0, otherwise



Minimum spanning trees

A minimum spanning tree is a spanning tree 
with the minimum total edge weight.

What are some practical applications for MST?
● The first MST algorithm was invented in 

1926 to find an efficient electrical grid.
● Design of computer networks.
● Cluster analysis.



Disjoint-set (union-find) data structure

● Keeps track of a set of objects 
partitioned into disjoint subsets.

● Supports two operations:
○ Find: Determine which subset an object is in.
○ Union: Union two subsets.

● It is possible to implement the operations in effectively constant time 
(inverse of Ackermann function).

● In programming contests, usually copy the (short) code from somewhere.



Kruskal’s algorithm is a greedy algorithm 
that finds a minimum spanning tree.

● Sort edges by ascending weight.
● While the tree is not complete:

○ Choose an edge with the lowest weight that 
has not been chosen yet.

○ Add the edge if it connects two different 
connected components.

● How to find a maximum spanning tree?

Kruskal’s algorithm



bool edge_cmp(const edge &a, const edge &b) {
return a.weight < b.weight;

}
vector<edge> mst(int n, vector<edge> edges) {

union_find uf(n);
sort(edges.begin(), edges.end(), edge_cmp);
vector<edge> res;
for (int i = 0; i < edges.size(); i++) {

int u = edges[i].u, v = edges[i].v;
if (uf.find(u) != uf.find(v)) {

uf.unite(u, v);
res.push_back(edges[i]);

}
}
return res;

}

Example code for Kruskal’s algorithm
// Disjoint set data structure O(log n)

#define MAXN 1000
int p[MAXN];
int find(int x) {

return p[x] == x ? x : p[x] = find(p[x]);
}
void unite(int x, int y) {

p[find(x)] = find(y);
}

for (int i = 0; i < MAXN; i++) p[i] = i;


