
Intractable Problems and
DP with Bitmask
Problem Solving Club
March 1, 2017

Agenda

● Intractable problems
○ Complexity classes P, NP, co-NP, #P, completeness
○ How to identify common intractable problems

● Dynamic programming with bitmask
○ How DP with bitmask helps solve intractable problems
○ Intractable problems that benefit from DP with bitmask
○ Examples of programming contest problems involving DP with bitmask

Intractable problems

● Intractable problems can be solved in theory (e.g., given large but finite
time), but which in practice take too long for their solutions to be useful.

● This differs from undecidable problems, which cannot even be solved in
theory (given any finite amount of time).

● A commonly cited undecidable problem is the halting problem:
○ Given the description of an arbitrary program and a finite input, decide whether the

program finishes running or will run forever.

● Alan Turing famously proved the halting problem undecidable.

Intractable problems

● Which problems are intractable? Nobody really knows.
● Cobham–Edmonds thesis: Intractable problems are those that can be

cannot be computed in polynomial time, i.e., in the complexity class P.
● This is the commonly used definition of intractability.

Complexity classes
Problems in computer science are divided into complexity classes.

● P Problems that can be solved in polynomial time (tractable).
○ Given a graph, what is the shortest path between two vertices?

● NP Problems where the solution can be verified in polynomial time.
○ Given a set of integers, is there any subset whose sum is zero?

● co-NP Complement of problems in NP.
○ Given a set of integers, is there no subset whose sum is zero?

● #P Counting problems associated with problems in NP.
○ Given a set of integers, how many subsets sum to zero?

Note: P ⊆ NP and P ⊆ co-NP. It is not known if P = NP, NP = co-NP, P = co-NP

● A problem is complete for a complexity class if it is among the "hardest"
problems in the complexity class.

● NP-complete problems are the “hardest” problems in NP.
● If an NP-complete problem can be solved in polynomial time, all problems

in NP can be solved in polynomial time.
● co-NP-complete and #P-complete are similarly defined.

Complexity classes - completeness

Common intractable problems

NP-complete (solution can be verified in polynomial time)

● Subset sum: Given a set of integers, is there any subset whose sum is 0?
● Hamiltonian path: Given a graph, does a Hamiltonian path exist?
● Travelling salesman: Given a graph, what is the shortest possible route

that visits each city exactly once and returns to the origin city?
● Satisfiability: Given a boolean formula, is there any assignment of

variables that will make it true? (Special case of 2-SAT is in P.)
● The complements of these problems are co-NP-complete.
● Counting versions of these problems are #P-complete.

Why do we care about intractable problems?

● The best known solutions for intractable problems generally run in
exponential or subexponential time.

● For decades, people have tried to find polynomial time solutions to
intractable problems, but have not succeeded.

● By recognizing intractable problems, we can avoid wasting time trying to
find an efficient solution.

● Common techniques used to solve intractable problems are
complete search and DP with bitmask.

● If exact solution is not needed, efficient approximation algorithms exist.

Dynamic programming with bitmask

● DP with bitmask is a technique usually used to solve intractable problems.
● It generally improves an O(n!) solution to O(2n).
● While still intractable, the runtime is significantly better.
● Contest problems with 10 ≤ n ≤ 20 can indicate DP with bitmask

n 2n n!

1 2 2

10 1,024 3,628,800

20 1,048,576 2,432,902,008,176,640,000

Travelling salesman problem

Given a graph, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

● What is an obvious greedy solution? Does it work?
● How would we solve this by complete search?
● What is the runtime?

Travelling salesman problem:
Overlapping subproblems

Let’s say we have 7 vertices. Consider these routes:

● 1→2→3→4→{5,6,7}→1
● 1→3→2→4→{5,6,7}→1

What can we say about the best order in which to visit 5,6,7 in these two cases?

Travelling salesman problem:
Overlapping subproblems

Let’s say we have 7 vertices. Consider these routes:

● 1→2→3→4→{5,6,7}→1
● 1→3→2→4→{5,6,7}→1

The best order to visit remaining vertices depends only on:

● The set of vertices visited
● The current vertex

Travelling salesman problem:
Dynamic programming solution
Without loss of generality, assume that the cycle starts and ends at vertex 1.

If we have 7 vertices, we can use the following DP solution:

f(v1, v2, v3, v4, v5, v6, v7, cur) = Assuming we’ve visited a certain set of vertices,
and we are at “cur” vertex, the minimum distance to visit remaining vertices and
return to vertex 1.

● vi = 1 if vertex i has been visited, else 0
● cur = current vertex number

How big is the DP array?

Travelling salesman problem:
Dynamic programming solution

DP function f(v1, v2, v3, v4, v5, v6, v7, cur)

● Base case: f(1, 1, 1, 1, 1, 1, 1, cur) = dist[cur][1]
○ If we’ve visited all vertices, need to return to vertex 1

● General case: f(v1, v2, v3, v4, v5, v6, v7, cur) =
min(j where vj=0) (dist[cur][j] + f(<set vj=true>, j))
○ If we haven’t visited all vertices, try all next vertices and choose the best one.

● The final answer is f(0, 0, 0, 0, 0, 0, 0, 1)
● What is the runtime of of this algorithm?

Where is the bitmask?

To implement f(v1, v2, v3, v4, v5, v6, v7, cur), a bitmask is usually used to
represent the set of visited vertices. Top-down DP is almost always used.

const int N = 20;
const int INF = 100000000;
int c[N][N]; // adjacency matrix
int mem[N][1<<N]; // DP memoize array
memset(mem, -1, sizeof(mem));
int tsp(int i, int S) {
 if (S == ((1 << N) - 1)) {
 return c[i][0];
 }
 if (mem[i][S] != -1) {
 return mem[i][S];
 }

 int res = INF;
 for (int j = 0; j < N; j++) {
 if (S & (1 << j))
 continue;
 res = min(res, c[i][j] +
 tsp(j, S | (1 << j)));
 }
 mem[i][S] = res;
 return res;
}

// tsp(0, 0) is the answer

● A secret santa is where n (2 ≤ n ≤ 15) people are each assigned another
person to buy a gift for.

● There may also be some restrictions. For example, Jack (person 1) is not
allowed to be assign Jane (person 2).

● Given n and a list of restrictions, how many ways can we assign people?
● Note: This is also known as the permanent of a matrix, and its calculation

is #P-complete.
● How would we solve this by complete search? What is the runtime? What

do you notice about the limits on n?

Secret Santa (CCPC 2016)

Secret Santa: Overlapping subproblems

Let’s say we have 7 people. Consider these partial assignments:

● (1→3)(2→5)
● (1→5)(2→3)

What can we say about the number of ways to complete the remaining
assignments in these two cases?

Secret Santa: Overlapping subproblems

Let’s say we have 7 people. Consider these partial assignments:

● (1→3)(2→5)
● (1→5)(2→3)

The number of ways to complete the remaining assignments depends only on
the set of people who have already been assigned to (here, 3 and 5).

Note: We have to assign people in a fixed order.

Secret Santa: DP solution

f(assigned) = # of ways to assign remaining people, where assigned is a
bitmask of the people who have already been assigned to.

● Base case: f(everyone assigned) = 1
● General case: f(assigned) =

sum(persons who have not been assigned to j)(assign current person to j if it is allowed)
● The current person is an implicit DP parameter - it is the number of

persons assigned (number of ones in the bitmask).
● What is the runtime of this algorithm?

Secret Santa: DP solution

def sv(bs):
if bs == (1<<N)-1: return 1 # Base case
if bs in dp: return dp[bs]
ans = 0

curPerson = 0 # Figure out current person by counting bits in bs
for n in range(N):

if bs & 1<<n:
curPerson += 1

for n in range(N): # Try to assign curPerson to every possible other person
if (not (bs & 1<<n)) and (not rst[curPerson][n]):

ans += sv(bs | 1<<n)
dp[bs] = ans
return ans

answer is sv(0)

Summary

● Intractable problems can be solved in theory (e.g., given large but finite
time), but which in practice take too long for their solutions to be useful.

● DP with bitmask is a problem solving technique for intractable problems,
that usually improves an O(n!) solution to O(2n).

● The travelling salesman problem is a common NP-complete problem. DP
with bitmask reduces its O(n!) solution to O(n22n). This makes the problem
feasible for a larger range of n.

● The secret santa problem (permanent of a matrix) is a #P-complete
problem. DP with bitmask reduces its O(n!) solution to O(n2n).

